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Abstract
We study the long range anti-ferromagnetic Ising spin models defined on one-
and two-dimensional lattices by using a replica method for the deterministic
spin models. In the long range limit, the replicated partition function reduces
to that of the generalized anti-Hebbian model. This suggests that there
are a dynamical phase transition and glassy states in the long range anti-
ferromagnetic spin models. Results of simulated annealing are also presented.

PACS numbers: 05.20.−y, 05.50.+q, 64.60Cn

1. Introduction

Recently, the study of spin glass models has been extended to spin models without quenched
disorder [1]. In addition to glassy states, the dynamical nature of the glass transition has
been an attractive subject, since it is not described by the equilibrium statistical mechanics.
Many efforts have been made to directly clarify the situation by dynamical approaches [2].
The replica theory is also expected to be useful to find the glassy condensation, which should
be described by the replica symmetry breaking (RSB) solution [3–6]. Interestingly, in some
infinite range random spin models, glass transitions are successfully identified by the replica
method with the marginality condition [4, 7], which was originally suggested by dynamical
mean field theory [8]. This idea is quite promising also in the study of deterministic spin
models.

The study of the glass transition without quenched disorder is a long standing subject.
There have been many studies which address this problem in terms of interacting particles [9].
Another approach will be a formulation by lattice gas models. We imagine a lattice system
in which sites are occupied by particles with repulsive long range interactions. By suitable
redefinition of interactions, the system will be mapped to an Ising spin model with long range
anti-ferromagnetic (AF) interactions. Although the dynamics of particles induces a restricted
spin dynamics due to the conservation of the number of particles, the long range AF spin
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models with conventional spin dynamics will be interesting in themselves. Since these spin
systems have affluent frustrations, we expect the low temperature phase to be highly nontrivial
and probably glassy. In a previous paper [10], we proposed a step for this problem by studying
a spin model suggested by the anti-Hebbian (AH) model [7].

The purpose of this paper is to extend the study to two long range AF spin models
defined on one- and two-dimensional lattices. In this introduction, we discuss the structure of
energy functions of the long range AF models in terms of the AH model and its generalized
version.

The first model is defined on the one-dimensional (1D) lattice of size N with the energy
function given by

H =
∑
|µ|

e−2|µ|
γ N

∣∣∣∣∣
∑

i

e
√−1(2πµi)/NSi/

√
N

∣∣∣∣∣
2

= 1

2

∑
ij

JijSiSj (1)

where
√−1 is the imaginary unit, Si = ±1 (i = 1, 2, . . . , N) are Ising spin variables and∑

|µ| means the sum over µ = 0, 1, 2, . . . , N/2 to count the different terms once. γ is a small
positive parameter such that exp(−1/γ ) � 1. Interactions in (1) are explicitly given by

Jij = γ

1 + (γ π(i − j))2
(2)

where we take for simplicity the sign of the interactions opposite to that used conventionally. In
(1), the terms with Jii = γ are included for convenience. Interactions are anti-ferromagnetic
and (πγ )−1 characterizes the range of interactions.

The second model is defined on the two-dimensional (2D) lattice of size N = L×L. Spin
variables are also of Ising type. Denoting lattice points by I = (ix, iy), (ix, iy = 1, 2, . . . , L),
Fourier space by M = (µx, µy), (−L/2 � µx,µy � L/2), and an inner product of them by
M · I , the energy function is defined by

H2D =
∑
|µ|

e−2M2

δN

∣∣∣∣∣
∑

I

e
√−1(2πM ·I )/LSI /

√
N

∣∣∣∣∣
2

= 1

2

∑
IJ

JIJ SI SJ (3)

where M2 = µ2
x + µ2

y, δ is a small positive number and
∑

|µ| means the sum over
µx = 0, 1, 2, . . . , L/2, µy = −L/2, . . . , L/2. Similarly, assuming exp(−1/δ) � 1, we
obtain

JIJ = πδ

2
exp

(
−1

2
δπ2|I − J |2

)
(4)

where |I − J |2 = (ix − jx)
2 + (iy − jy)

2. Due to the assumptions on the parameters, the
interactions of these models are long range and the dimensions of the lattice will not matter
much in the long range limit.

Both models are suggested by observations on the AH model. The energy function of the
AH model is defined by changing the sign of the Hopfield energy function [11, 12]. Here we
introduce a slightly generalized version, which has the energy function

HG = 1

2N

∑
µ

wµ

(∑
i

ξ
µ

i Si

)2

(5)
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where ξ
µ

i = ±1 are quenced random variables and weights wµ are real numbers which will
be specified later. We call this kind of spin model a generalized anti-Hebbian (GAH) model.
The energy function reduces to that of the AH model by setting wµ = 1 for µ = 1, 2, . . . , P

and zero otherwise. In this case, the energy function consists of P constraint terms for N spin
variables. Thus the energy function with P < N is zero on the (N − P)-dimensional solution
space of the constraints if spin variables take continuous values.

The properties of the AH model are summarized as follows. For P � N , this model
is similar to the Sherrington–Kirkpatrick model [13, 14]. For P < N , this model is similar
to the random orthogonal model [4], that is, it has a dynamical phase transition and glassy
low temperature states. This was found by the replica method with the marginality condition
and confirmed by simulations. Intuitively, for P < N , the states close to the (N − P)-
dimensional solution space will have very small energy and glassy states for the discrete
spin variables. This means that small P gives a large space of glassy states. The properties
with small P will basically hold for the GAH model if most of the wµ are very small or
zero.

The energy function of the 1D model (1) is obtained by setting wµ = exp(−2|µ|/γN)

and replacing random linear functions of Si by the Fourier components of Si on the one-
dimensional lattice. The number of constraints is effectively given by Nγ . The resulting
interactions are deterministic and have a range proportional to 1/γ . This range becomes very
large in the limit of small number of constraints, which corresponds to the infinite range AF
model. This correspondence is a very interesting aspect of these spin models. The energy
function of the 2D model (3) is obtained in a similar manner.

Another interesting aspect of these models is that they have low energy crystalline
structures constructed by the Fourier components of the smallest wavelength. The basin
of attraction of these configurations will become large as the range of interactions becomes
short. In the short range limit, only the nearest neighbour interactions survive and crystalline
structures will dominate the basin of attraction. The transition to this situation will be quite
an interesting subject, although we concentrate on the possible glassy states in this paper.

In spite of the absence of quenched disorder, we expect that, due to the similarity of the
energy functions to the AH model, the long range AF models have dynamical phase transitions
and glassy states at least for small γ or δ. This transition will not be found in the framework
of the equilibrium statistical mechanics. However, the replica method will work well to study
these properties as in the AH model.

This paper is organized as follows. In section 2, we discuss the high temperature expansion
for the two long range AF models, which will provide the first evidence of phase transition for
these models. In section 3, the replica method for the deterministic spin models is reviewed
and applied to the long range AF models. In section 4, the results of the replica theory are
compared with the simulation results. Section 5 is devoted to some discussions.

2. High temperature expansion for the long range AF models

In this section, we discuss the high temperature expansion for the long range AF models,
which will provide the first evidence that the paramagnetic phase should cease to exist at low
enough temperature. For this study to parallel that of the AH model, we discuss the expansion
in terms of γ or δ. The discussions in this and following sections are mainly focused on
the 1D model, but the extension to the 2D model is straightforward. The expansion will be
conveniently performed by using Fourier component representation. For simplicity, we use
the abbreviations eµ

i = e
√−1(2πµ/N)i and aµ = e−|µ|/γN .
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Using the Gaussian integral, the partition function for the long range AF model is expressed
as

Z =
∑
{S}

exp


−1

2
β
∑
|µ|

∣∣∣∣∣
√

2aµ

∑
i

eµ

i Si/
√

N

∣∣∣∣∣
2



=
∑
{S}

∫
exp


−1

2

∑
|µ|

|φµ|2 +
1

2

√−1

√
2β

N

∑
i

∑
µ

aµ eµ

i φµSi


∏

|µ|

dφµ

2π

= 2N

∫
exp(−L{φµ})

∏
|µ|

dφµ

2π
(6)

where
∑

µ means the summation over µ = −N/2, . . . , N/2, φµ are complex integral variables
with φ−µ = φ∗

µ and dφµ = d Re φµ d Im φµ. L{φµ} is given by

L{φµ} = 1

2

∑
|µ|

|φµ|2 −
∑

i

ln cos

√
β

2N

∑
µ

aµ eµ

i φµ. (7)

The second term in L{φµ} makes Z small for large β. To evaluate this effect, we expand it
in terms of

∑
µ aµ eµ

i φµ

/√
N , which are of order

√
γ . We discuss this point later. Then to

fourth order, we have

L{φµ} = 1

2

∑
|µ|

(
1 + βa2

µ

) |φµ|2 +
1

48N
β2

∑
∑4

k=1µk=0

∏
k

aµk
φµk

+ · · · . (8)

The first term in L{φµ} is Gaussian, while the rest are higher order terms of φµ. The propagators

are given by 〈|φµ|2〉 = 2
(
1 + βa2

µ

)−1
, where 〈· · ·〉 means an expectation value by the Gaussian

part of L{φµ}. Performing φµ integrals and rewriting the µ sum as integrals over µ/N , we
obtain the free energy density f , energy density e,

f = − 1

β
ln 2 +

1

β
g(β) +

1

4

γ 2

β
(ln(1 + β))2 + · · ·

e = 1

2

γ

β
ln(1 + β) +

γ 2

2

ln(1 + β)

(1 + β)
+ · · ·

and entropy s = β(e − f ) to the second order of γ , where

g(x) = γ

2

∫ 1

0

ln(1 + xt)

t
dt . (9)

Numerical study reveals that s becomes negative below a finite low temperature Ts . Using
g(x) ∼ (γ /4)(ln x)2 for large x, we obtain Ts ∼ exp(−2

√
ln 2/γ ) up to some constant to the

first order of γ .
For consistency of the expansion, the third term of the free energy should be

small compared with the second term. The effective expansion parameter is given by
β
∑

µ a2
µ〈|φµ|2〉/N = 2γ ln(1 + β), which should be smaller than 1. This holds down to

temperature ∼exp(−1/γ ), which is much lower than Ts for small γ .
For the 2D model,we repeat a similar calculation,where aµ are replaced by exp(−M2/δN)

and µ sums over 0 � µx � L/2,−L/2 � µy � L/2. With the assumption exp(−1/δ) � 1,
we find that the results for the 2D model are obtained by the replacement of γ by δπ/2 in the
expressions of the 1D model to the second order of δ.

The existence of Ts is quite an interesting aspect of these AF models, as well as of the
AH model. Since negative entropy for an Ising spin system is not acceptable, the above result
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does not hold below Ts . Physically, small entropy implies that the contributing configurations
are very few. Thus Ts may be regarded as some condensation temperature. However, the
following remarks should be borne in mind.

As will be discussed in section 3, the free energy obtained in this section can be regarded
as a replica symmetry (RS) solution for the paramagnetic phase. The existence of Ts means
that this solution is irrelevant below Ts . Thus we should find another solution to describe the
low temperature phase, which should appear below a temperature higher than Ts . In short, Ts

can be regarded as a property of a simple replica saddle point and we should study a wider
space of solutions to describe the low temperature phase.

3. A replica method for the long range AF models

In the previous section, we found that the entropy evaluated by the high temperature expansion
becomes zero at finite temperature for the long range AF models just as for the AH model. In
this section, we present the replica theory for the long range AF models, which reduces to the
replica mean field theory of the GAH model to the first order of γ or δ. We then study the
solutions by assuming the RS and RSB ansatz. The results of the replica mean field theory
are compared with the simulation results in section 4. For simplicity, we concentrate on the
1D model. The extension to the 2D model is straightforward.

3.1. Replica method without quenched average

We first review the replica method without random averages, which was presented in [10].
The basic idea is to rearrange the summation in the replicated partition function.

Let H {Si} be the energy function. Introducing replica spin variables S
ρ

i (ρ = 1, 2, . . . , n),
the replicated partition function is simply given by

Zn =
∑
{S}

exp


−β

n∑
ρ=1

H
{
S

ρ

i

} (10)

where β = 1/T is the inverse temperature. The free energy is given by f = −ln Z/βN with
ln Z = limn→0(Z

n − 1)/n. In the case of random spin models, the products S
ρ

i Sσ
i arise in the

averaged Zn and they play an important role in finding correlation among replicas.
The basic idea for the replica method without random average is to rearrange the statistical

sum in the replicated partition function. We expect that, if there are some configurations which
contribute mainly in (10), several replicas will have similar configurations, i.e. condensation
among replicas. This suggests performing first a partial statistical sum with fixed correlation
among replicas, which will be described by S

ρ

i Sσ
i . For this purpose, we use the fact that S

ρ

i Sσ
i

are invariant by the transformation S
ρ

i → ηiS
ρ

i , where ηi = ±1 are common among replicas.
Thus the partial statistical sum will be achieved by the summation over ηi after the replacement
of S

ρ

i by ηiS
ρ

i in (10). On the other hand, due to the summation over S
ρ

i , Zn does not change
by this replacement. Thus the summation over ηi = ±1 simply gives 2NZn. In this way, we
obtain

Zn = 1

2N

∑
{η}

∑
{S}

exp


−β

n∑
ρ=1

H
{
ηiS

ρ

i

} (11)

where
∑

{η} means the sum over all ηi = ±1. In this expression, the summation over ηi with
fixed S

ρ

i collects the contributions with fixed S
ρ

i Sσ
i . The resulting expression will contain the
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couplings among different replicas and will be treated by the saddle point approximation, if
possible.

The following remarks may be helpful in understanding how the ηi sum works. The
formulation presented above was originally inspired by the similarity between the diagrams
which arise in the usual replica theory and the high temperature expansion [7]. For the original
expression (10), this similarity suggests that there may be some prescription which looks like
a high temperature expansion and leads to replica theory without using random averages. This
is realized by the summation over one replica variable with fixed correlation among replicas.
More explicitly, by using the relation

n∑
ρ=1

H
{
S

ρ

i

} =
∑
i<j

Jij

n∑
ρ=1

S
ρ

i S
ρ

j =
∑
i<j

JijS
1
i S

1
j

n∑
ρ=1

d
ρ

i d
ρ

j

where d
ρ

i = S1
i S

ρ

i , we can perform the S1
i sum with fixed d

ρ

i for (10) in the same way as
the high temperature expansion in terms of interactions, yielding a function of d

ρ

i . Note
that S

ρ

i Sσ
i = d

ρ

i dσ
i with generic replica indices also do not change under this summation.

However, to avoid the apparent breaking of symmetry among replicas, we reformulate this
procedure by introducing the auxiliary variables ηi and reach the formulation presented in
this section. We note that this argument implies that the ηi sum contains the information
obtained by the high temperature expansion, which will be obtained by assuming no correlation
among replicas. We can get more information by assuming nontrivial correlation among
replicas.

3.2. Approximated partition function

To sum ηi in the replicated partition function, it is convenient to use a Fourier representation
as the high temperature expansion performed in section 2. After introducing the Gaussian
variables φρ

µ (ρ = 1, 2, . . . , n), Zn for the long range AF model is written as

Zn = 1

2N

∑
{η,S}

exp


−1

2
β
∑
ρ,|µ|

∣∣∣∣∣
√

2aµ

∑
i

eµ

i ηiS
ρ

i

/√
N

∣∣∣∣∣
2



=
∑
{S}

∫
exp


−1

2

∑
ρ,|µ|

∣∣φρ
µ

∣∣2 +
∑

i

ln cos

( √
β√

2N

∑
ρ,µ

aµφρ
µ eµ

i S
ρ

i

) ∏
ρ,|µ|

dφρ
µ

2π
. (12)

We first perform φ
ρ

i integrals to obtain A{Sρ}, which is defined by

exp A{Sρ} =
∫

exp(−L{Sρ, φρ})
∏
ρ,|µ|

dφρ
µ

2π
(13)

where

L{Sρ, φρ} = 1

2

∑
ρ,|µ|

∣∣φρ
µ

∣∣2 −
∑

i

ln cos

( √
β√

2N

∑
ρ,µ

aµφρ
µ eµ

i S
ρ

i

)
. (14)

Then the partition function Zn = ∑
S exp(A{Sρ}) will be evaluated by the saddle point

approximation, if possible.
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The studies of the high temperature expansion suggest studying A{Sρ} by perturbation
in terms of γ . Noting that 
i = ∑

ρ,µ aµφρ
µ eµ

i S
ρ

i

/√
N are of order

√
γ , we expand the

expression in terms of 
i and obtain

L{Sρ, φρ} = 1

2

∑
ρ,|µ|

∣∣φρ
µ

∣∣2 +
β

4

∑
i


2
i +

β2

48

∑
i


4
i + · · · (15)

to the fourth order of 
i . The second-order term of 
i contains diagonal and off-diagonal
terms of µ. Some inspections imply that the off-diagonal terms give second and higher order
terms of γ , as well as the fourth-order terms of 
i . Thus, to the first order of γ , we obtain

L1{Sρ, φρ} = 1

2

∑
ρ,|µ|

∣∣φρ
µ

∣∣2 +
1

2
β
∑
ρσ

∑
|µ|

a2
µφρ

µφσ
−µqρσ (16)

where qρσ = ∑
i S

ρ

i Sσ
i

/
N , including qρρ = 1. Using this expression, we obtain

A1{Sρ} = −Tr
∑
|µ|

ln
(
1 + βqa2

µ

)
(17)

where Tr means a trace over the replica indices. Rewriting the µ sum as integrals over µ/N ,
we reach the expression given by

A1{Sρ} = −1

2
Nγ Tr

∫ 1

0

ln(1 + βqt)

t
dt . (18)

This expression defines the replica mean field theory since the action is expressed only by the
overlap matrix q.

For the 2D model, we repeat the same procedure. After some calculations, we obtain (18)
with γ replaced by πδ/2. The expressions obtained for both models imply that the two AF
models are described by the same replica mean field theory at least to the first order of γ or δ.

At this stage, it is convenient to introduce the GAH model which gives (18) by the usual
replica theory. By the discussion in appendix, we find

HG = 1

2N

∑
µ

a2
µ/2

(∑
i

ξ
µ

i Si

)2

(19)

where the subscript µ/2 is to count the constraint terms with a certain weight correctly.
The study in this section suggests that the glass transition of the long range AF models

can be studied by the replica mean field theory for the GAH model for small parameters. This
implies that the details of the lattice structure become irrelevant in the limit of long range
interactions, as often happens in statistical physics.

3.3. Marginally stable RSB solution

The replica study of the GAH model can be done in the same way as the random orthogonal
model [4] and the AH model [7]. The study on the AH model suggests that the GAH model
also has two kinds of one-step RSB solutions for small parameters. One is the usual solution,
which is defined by the extremum condition on the saddle point function and referred to as
static RSB. The other is the marginally stable RSB solution. We are especially interested in
the latter, which is expected to describe the dynamical phase transition and glass states. In
this subsection, we review these solutions.

The replica partition function for the GAH model is given by

Zn
1 =

∑
{S}

exp − N Tr g(βq) (20)
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where g(x) is given by (9). This expression is evaluated by the saddle point approximation,
which is reviewed in the appendix, where the definitions of the saddle point variables qρσ

and λρσ are also presented. The free energy, which should be extremized, is given by
f = −limn→0

(
Zn

1 − 1
)/

nβN .
We first give some remarks on the RS solutions, which are defined by qρσ = q for ρ 	= σ .

The trivial RS solution q = 0 gives the same expression of free energy as the high temperature
expansion to the first order of γ . This solution is not physically acceptable below Ts as
discussed in section 2. As shown in the appendix, the RS solution with q 	= 0 appears below
an extremely low temperature TRS ∼ exp(−1/γ ), which is lower than Ts for small γ . This
situation may look strange, but in case of the AH model with P/N < 1, there is no RS solution
with q 	= 0 down to zero temperature. The positive but very small TRS may be due to the
exponential decay of the weights wµ. Since the instability of the paramagnetic phase below
Ts has no physical meaning, we concentrate on the solutions whose transition takes place
above Ts .

The one-step RSB ansatz is defined by qρσ = q1, λρσ = λ1 in m × m diagonal blocks
and qρσ = 0, λρσ = 0 elsewhere. The value of m should satisfy 0 < m < 1 to describe the
fragmented configuration space properly. By this ansatz, the free energy reduces to

βf = 1

m
g(βxm) +

(
1 − 1

m

)
g(βx0) +

1

2
(m − 1)λ1q1 +

1

2
λ1 − 1

m
ln
∫

2m coshm(
√

λ1z) Dz

(21)

where Dz = exp(−z2/2) dz/
√

2π and xm = 1 − q1 + mq1, x0 = 1 − q1.
The static RSB solution is given by the extremum condition ∂f/∂q1 = 0, ∂f/∂λ1 = 0

and ∂f/∂m = 0. This solution appears below the temperature TRSB which is higher than but
very close to Ts · q1 is very close to 1.0 down to lower temperature. This solution is stable
with respect to small changes of the saddle point variables at least near TRSB. We expect that
this solution represents the absolute minimum state of the GAH model.

Interestingly, as pointed out in the literature [4, 7], the results of simulated annealing
are not described by the static RSB solution but by the marginally stable RSB solution. It
is expected that the random condensation states, including spin glasses, are characterized by
marginal stability of the saddle point [1, 14]. This is also suggested by the dynamical mean
field theory [8]. As discussed in the appendix, the marginally stable RSB solution for the
GAH model is defined by the condition

1 − gµ = 0 (22)

where

µ = −
∫

coshm(
√

λ1z) cosh−4(
√

λ1z) Dz∫
coshm(

√
λ1z) Dz

(23)

g = 2β2g′′(βx0) (24)

in addition to ∂f/∂q1 = 0 and ∂f/∂λ1 = 0. Numerical studies reveal that the marginally
stable RSB appears below a moderate temperature, which is denoted by Tg , and the energy for
this solution is nearly constant below Tg as presented in the next section.

To summarize this section, we present the γ -dependence of TRS, Ts and Tg in figure 1.
Although these characteristic temperatures decrease as γ decreases, Tg becomes much higher
than Ts for small γ . In the next section, we present some simulation results of the 1D and
2D AF models, as well as the numerical studies of the marginally stable RSB solutions of the
GAH model.
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Figure 1. γ -dependence of three characteristic temperatures of the GAH model, TRS, Ts and Tg

(from bottom).

4. The results of simulated annealing

This section is devoted to the presentation of simulation results. Spin variables are assumed to
obey the Monte Carlo (MC) dynamics, where spin flips are performed sequentially according
to the probabilities controlled by the change of energy. For comparison with the results of the
replica method, we restrict ourselves to small γ and δ. The boundary conditions are simply
assumed to be open, that is, the interactions are only determined by the line length between
the two sites on the lattice. We are especially interested in the temperatures at which the
properties of dynamics change, which may be regarded as the onset of condensation states.

By studying several runs of simulated annealing for 1D and 2D models, we found that the
behaviour of the energy is similar to that of the AH model and other spin models which show
a glass transition. Basically, the energy decreases as the temperature decreases in the high
temperature region and ceases to decrease around a certain temperature, which is much higher
than Ts . Around this temperature, the acceptance rate of spin flips decreases drastically and
the Edward–Anderson order parameter increases to 1.0 rapidly. This means that the annealing
configurations freeze below this temperature. The resulting configurations seem to be random
and uncorrelated. The energies at low temperature depend on the initial configurations. In
addition, the averages of these depend on the number of MC steps at each temperature, i.e. an
annealing schedule, especially when it is not large enough.

In figures 2 and 3, the results of simulated annealing for the 1D model are represented
by dots with error bars for γ = 0.025 and 0.05 respectively, and in figures 4 and 5 for the
2D model with corresponding δ = 2γ /π . The full curves represent the results of the high
temperature expansion and the marginally stable RSB solutions for the GAH model,which give
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Figure 2. T-dependence of energies for the 1D model with γ = 0.025, N = 500. Dots with
error bars represent the energies obtained by five runs of simulated annealing. The number of MC
steps at each temperature is 104. The full curves are obtained using the results of high temperature
expansion of the first and second orders of γ , and marginally stable RSB of the GAH model for
T < Tg = 0.001 67.

Tg = 0.001 67 with e = 0.000 134 for γ = 0.025 and Tg = 0.003 78 with e = 0.000 527 for
γ = 0.05. Qualitatively, the simulation results show fair agreement with the high temperature
expansion and the results of replica theory, although the energies obtained by simulations tend
to be larger than those obtained theoretically. There may be two reasons for this; one is the
small number of MC steps at each temperature and the other is the small system size. System-
size effect seems very large for the 2D model due to the large open boundary. Even with these
aspects, T-dependence of energies, including the break points, seems to be described well by
the replica theory.

As discussed in section 1, the long range AF models have crystalline states, which are
given by Si = ±(−1)i for the 1D model and SI = ±(−1)ix+iy for the 2D model. By
increasing the temperature, we can study the melting of these states. In figures 3 and 5, the
temperature dependence of energies is presented for respective values of parameters. The
initial configurations have small positive energies probably due to the finite system sizes.
As the temperature increases, the energies do not change until Tg and start increasing rather
rapidly slightly above Tg , tending to the values in the high temperature region. This clearly
shows the melting of the AF configurations.

Having these results, we conclude that, at least for small γ or δ, results of simulated
annealing for the long range AF are well described by the high temperature expansions down
to Tg and the marginally stable RSB solutions below Tg. This implies that we are observing
glass transitions of the long range AF spin models.
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Figure 3. Same as figure 2 but for γ = 0.05 and Tg = 0.003 78. The crosses with broken error bars
represent the melting of the crystalline state of the 1D model with initial temperature T = 0.001.
The number of MC steps at each temperature is 104.

5. Discussion

In this paper, we have studied two long range AF spin models by the replica method which
does not require random averages. These models are motivated by observations on the AH
model, which is characterized by P constraint terms in the energy function. When these
constraints are generalized to Fourier components of spin variables with suitable weights,
the energy functions become those of long range AF models. The ranges of interactions are
proportional to the inverse of the effective number of constraints.

Although the long range AF models introduced in this way are not fully described by the
replica mean field theory, we can study them to the first order of the inverse of the interaction
range, e.g. γ in the framework of replica mean field theory. As γ tends to 0, the model tends to
the infinite range AF model, which shows no phase transition at finite temperature. For small
but finite γ , the situation changes dramatically. By high temperature expansion, we found
that there is a finite temperature Ts below which the entropy becomes negative and the replica
theory suggests that there is a glass transition at Tg far above Ts . The simulated annealing
gives consistent results. We expect that these properties will hold generally in the long range
AF Ising spin models since the idea of modelling is not restricted to the situations considered
in this paper.

The basic picture of the glassy phase of spin models has already been suggested in the
literature [1, 3–5]. The existence of two characteristic temperatures TRSB ∼ Ts and Tg is
common among the studied models. We expect that TRSB would be a phase transition point to
the absolute minimum state if the annealing configurations could move over all configuration
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Figure 4. The results of simulated annealing for the 2D model with δ = 2 × 0.025/π and L = 20.
Full curves are the same as in figure 2.

space even below Tg . We suspect that this will be achieved by enumerating all configurations
to calculate the partition function. The existence of Tg far above TRSB implies that, before the
temperature reaches the static RSB transition point, the annealing configurations are trapped
dynamically in the partitioned configuration space. Our studies imply that the replicated
partition function, when it is treated properly, gives a signal of this partitioning also for the
deterministic spin models. However, at very low temperature, we should note two aspects.
First, the Gaussian approximation for Zn should be replaced by something else for β → ∞.
The resulting theory may be out of the replica mean field theory. Secondly, the one-step RSB
ansatz does not seem to be correct at very low temperature, since it does not describe the
behaviour of energy down to zero temperature [7]. These points remain to be studied.

Strictly speaking, glass transitions should be studied by dynamical approaches, as was
done for the Ising perceptron problem [8]. Recent studies of the dynamical mean field method
for the random spin model imply that, below the glass transition, the time correlation function
shows a plateau on a short thermal timescale, which is described by the Edward–Anderson
order parameter, and starts to decrease on a much larger timescale [1]. We suppose that this
behaviour is reflected by the replica solutions, i.e. no relevant RS but one-step RSB with zero
off-block elements. However, as discussed in [4], we should be careful about the meaning of
the resulting free energies. Theoretical studies of spin dynamics are highly desirable for the
long range AF models, as well as numerical studies of large timescale dynamics.

In this paper, we restrict ourselves to the situation of very long range interactions. To
study the spin models with short range interactions, we need to extend the study to the large
parameter region. We have performed simulations up to γ = 0.1 and corresponding δ in
the same way as in section 4 and found qualitatively different behaviour of energies, that
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Figure 5. The results of simulated annealing for the 2D model with δ = 2 × 0.05/π and L = 20.
The full curves are the same as in figure 3. The crosses with broken error bars represent the melting
of crystalline states for the 2D model.

is, the energies start to become smaller than the high temperature expansion around a
temperature higher than Tg . It is interesting that this temperature is close to the melting
temperature of the AF configurations. We suspect that the annealing configurations are
affected by short scale anti-ferromagnetic correlation for this γ . In the short range limit, the
models reduce to the spin models with nearest neighbour interactions, which have been studied
well in statistical physics. In 2D short range models, it is known that there is a second-order
phase transition to crystalline states. The crossover between the crystalline transition and
glass transition will be an interesting subject in 2D and higher dimensional moderate range
AF Ising models.

Although the replica method suggested in this and the previous paper is restricted to
Ising spin models, the basic idea will be generalized to other models, including other types
of dynamical variables. Although we should be careful about suitable order parameters and
the relevance of the partial statistical sum, it will be quite interesting to study the system of
interacting particles using this idea.

Appendix

In this appendix, we first discuss the proper GAH model to describe the long range AF
models and then present some reviews of the replica theory, including the RS solution and the
marginally stable condition of the one-step RSB solution.

Let us first discuss the GAH model which describes the long range AF models. The energy
function (1) has two constraint terms for each µ, which come from the real and imaginary
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parts of the linear functions. This suggests introducing the energy function of the GAH model
given by

HG = 1

2N

∑
µ

a2
µ



(∑

i

ξ
2µ

i Si

)2

+

(∑
i

ξ
2µ+1
i Si

)2

 (A.1)

where aµ = exp(−µ/γN). For large N, this expression reduces to

HG = 1

2N

∑
µ

a2
µ/2

(∑
i

ξ
µ

i Si

)2

(A.2)

which will give the same action as long range AF models give by the usual replica method.
Replica theory for this model is studied in the same way as the AH model. Averaging

over quenched randomness, which is denoted by · · ·, gives

Zn
G = exp

{
−1

2
Tr
∑

µ

ln
(
1 + βa2

µ/2q
)}

(A.3)

where q in this expression is an order parameter matrix. By introducing the integral
representations for delta functions and the expression

1 =
∏
ρ<σ

∫
δ

(
Nqρσ −

∑
i

S
ρ

i Sσ
i

)
N dqρσ

=
∏
ρ<σ

∫
exp

{
λρσ

(
Nqρσ −

∑
i

S
ρ

i Sσ
i

)}
N dλρσ dqρσ

2π i

we obtain

Zn
G =

∫∫
exp{−Nβnf (λρσ , qρσ )}

∏
ρ<σ

N dλρσ dqρσ

2π i
(A.4)

where

βnf (λρσ , qρσ ) = Tr g(βq) +
1

2

∑
ρ 	=σ

λρσ qρσ − ln
∑
{S}

exp
1

2

∑
ρ 	=σ

λρσ SρSσ (A.5)

where g(x) is given by (9).
With the one-step RSB ansatz, matrix q has eigenvalue 1 − q1 + mq1 with degeneracy

n/m and eigenvalue 1 − q1 with degeneracy n − n/m. We then obtain (21).
Let us discuss RS saddle points, which are defined by qρσ = q, λρσ = λ for ρ 	= σ . The

free energy reduces to

βf = βqg′(β(1 − q)) + g(β(1 − q)) +
1

2
λ(1 − q) −

∫
ln 2 cosh(

√
λx) Dx. (A.6)

The saddle point equations are given by

q =
∫

tanh2(
√

λx) Dx λ = −2β2qg′′(β(1 − q)).

We first note that the trivial RS soultion q = 0 gives

f = − 1

β
ln 2 +

1

β
g(β).
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This equals the high temperature free energy of the long range AF model to the first order
of γ . Assuming that q continuously appears from zero, we obtain

1 = γ

{
ln(1 + β) − β

1 + β

}
(A.7)

for the transition temperature TRS of q 	= 0 RS solution. For γ small enough, we obtain
TRS ∼ exp(−1/γ ).

The derivation of the marginality condition for one-step RSB has been discussed in
appendices in [4, 7]. Here we briefly review them. Let g(x) = ∑

k ckx
k. By setting

qρσ = q0
ρσ + δqρσ and λρσ = λ0

ρσ + δλρσ in (A.5), where q0
ρσ and λ0

ρσ are one-step RSB saddle
points, the change of (A.5) is given by

βnδ2f = 1

2

∑
(ρσ )(κτ)

G(ρσ)(κτ)δqρσ δqκτ +
∑
(ρσ )

δqρσ δλρσ +
1

2

∑
(ρσ )(κτ)

F(ρσ )(κτ)δλρσ δλκτ (A.8)

to the second order of deviations, where

G(ρσ)(κτ) = ∂2 Tr g(βq)

∂qρσ ∂qκτ

=
∑

k

ckβ
k2k

∂(qk−1)ρσ

∂qκτ

F(ρσ )(κτ) = 〈SρSσ 〉〈SκSτ 〉 − 〈SρSσ SκSτ 〉
where 〈· · ·〉 is the expectation value with the weight exp

(
1
2

)∑
ρ 	=σ λ0

ρσ SρSσ. The marginally
stable condition is given by setting to zero the eigenvalue of replicon modes, which have the
same structure as the de Almeida–Thouless (AT) instability of the RS solution [15]. The
matrix elements related to these modes have four replica indices which belong to the same
sub-blocks of the RSB ansatz. There are three different values depending on the combination:
(ρ = κ, σ = τ ), (ρ = κ, σ 	= τ ) and (ρ 	= κ, τ 	= σ). The respective elements are denoted
by P,Q and R for F(ρσ)(κτ) and P ′,Q′ and R′ for G(ρσ)(κτ). For these matrices, the replicon
modes have the eigenvalues µ = P − 2Q + R and g = P ′ − 2Q′ + R′, respectively. Taking
into account the coupling

∑
(ρσ ) δqρσ δλρσ , we obtain the marginality condition 1 − gµ = 0.

The explicit form for µ is given by (23) for the one-step RSB with zero off-diagonal
blocks. To evaluate g, we write

∂(qk−1)ρσ

∂qκτ

=
k−2∑
l=0

{
(qk−2−l)ρκ (q

l)τσ + (qk−2−l)ρτ (q
l)κσ

}

and express the matrix elements by the eigenvalues of q. After a straightforward calculation,
we obtain (24).
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